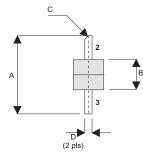

#### TetraFET

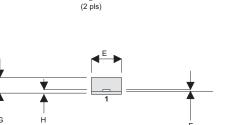
## D2218UK



#### **ROHS COMPLIANT METAL GATE RF SILICON FET**

**GOLD METALLISED** 


MULTI-PURPOSE SILICON


**DMOS RF FET** 

20W - 12.5V - 500MHz

SINGLE ENDED

#### **MECHANICAL DATA**





DP

PIN 1 SOURCE PIN 2 DRAIN

PIN 3

GATE

| DIM | mm    | Tol. | Inches | Tol.  |
|-----|-------|------|--------|-------|
| Α   | 16.51 | 0.25 | 0.650  | 0.010 |
| В   | 6.35  | 0.13 | 0.250  | 0.005 |
| С   | 45°   | 5°   | 45°    | 5°    |
| D   | 1.52  | 0.13 | 0.060  | 0.005 |
| Е   | 6.35  | 0.13 | 0.250  | 0.005 |
| F   | 0.13  | 0.03 | 0.005  | 0.001 |
| G   | 3.56  | 0.51 | 0.140  | 0.020 |
| Н   | 0.64  | 0.13 | 0.024  | 0.005 |

### FEATURES

- SIMPLIFIED AMPLIFIER DESIGN
- SUITABLE FOR BROAD BAND APPLICATIONS
- LOW C<sub>rss</sub>
- SIMPLE BIAS CIRCUITS
- LOW NOISE
- HIGH GAIN 10 dB MINIMUM

#### **APPLICATIONS**

 VHF/UHF COMMUNICATIONS from DC to 1 GHz

#### ABSOLUTE MAXIMUM RATINGS (T<sub>case</sub> = 25°C unless otherwise stated)

| PD                  | Power Dissipation                      | 70W          |
|---------------------|----------------------------------------|--------------|
| BV <sub>DSS</sub>   | Drain – Source Breakdown Voltage       | 40V          |
| BV <sub>GSS</sub>   | Gate – Source Breakdown Voltage        | ±20V         |
| I <sub>D(sat)</sub> | Drain Current                          | 16A          |
| T <sub>stg</sub>    | Storage Temperature                    | –65 to 150°C |
| T <sub>j</sub>      | Maximum Operating Junction Temperature | 200°C        |

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.



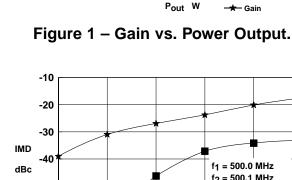
### D2218UK

#### **ELECTRICAL CHARACTERISTICS** (T<sub>case</sub> = 25°C unless otherwise stated)

|                     | Parameter                    | Test C                                     | Min.                   | Тур. | Max. | Unit |    |
|---------------------|------------------------------|--------------------------------------------|------------------------|------|------|------|----|
| B\/                 | Drain-Source                 | V <sub>GS</sub> = 0                        | I <sub>D</sub> = 10mA  | 40   |      |      | V  |
| BV <sub>DSS</sub>   | Breakdown Voltage            | VGS = 0                                    | D = 1000               | 40   |      |      | v  |
|                     | Zero Gate Voltage            | \/ _ 12 5\/                                |                        |      |      | 0    | m۸ |
| IDSS                | Drain Current                | $V_{\rm DS} = 12.5V \qquad V_{\rm GS} = 0$ |                        |      |      | 8    | mA |
| I <sub>GSS</sub>    | Gate Leakage Current         | V <sub>GS</sub> = 20V                      | $V_{DS} = 0$           |      |      | 8    | μA |
| V <sub>GS(th)</sub> | Gate Threshold Voltage*      | I <sub>D</sub> = 10mA                      | $V_{DS} = V_{GS}$      | 0.5  |      | 7    | V  |
| 9 <sub>fs</sub>     | Forward Transconductance*    | V <sub>DS</sub> = 10V                      | I <sub>D</sub> = 1.6A  | 1.44 |      |      | S  |
| G <sub>PS</sub>     | Common Source Power Gain     | P <sub>O</sub> = 20W                       |                        | 10   |      |      | dB |
| η                   | Drain Efficiency             | V <sub>DS</sub> = 12.5V                    | I <sub>DQ</sub> = 1.6A | 40   |      |      | %  |
| VSWR                | Load Mismatch Tolerance      | f = 500MHz                                 |                        | 20:1 |      |      | —  |
| C <sub>iss</sub>    | Input Capacitance            | V <sub>DS</sub> = 12.5V V <sub>0</sub>     | GS = -5V f = 1MHz      |      |      | 96   | pF |
| C <sub>oss</sub>    | Output Capacitance           | V <sub>DS</sub> = 12.5V V <sub>0</sub>     | GS = 0 f = 1MHz        |      |      | 80   | pF |
| C <sub>rss</sub>    | Reverse Transfer Capacitance | V <sub>DS</sub> = 12.5V V <sub>0</sub>     | GS = 0 f = 1MHz        |      |      | 8    | pF |

\* Pulse Test: Pulse Duration = 300  $\mu s$  , Duty Cycle  $\leq 2\%$ 

#### HAZARDOUS MATERIAL WARNING


The ceramic portion of the device between leads and metal flange is beryllium oxide. Beryllium oxide dust is highly toxic and care must be taken during handling and mounting to avoid damage to this area.

#### THESE DEVICES MUST NEVER BE THROWN AWAY WITH GENERAL INDUSTRIAL OR DOMESTIC WASTE.

#### THERMAL DATA

| R <sub>THj-case</sub> | Thermal Resistance Junction – Case | Max. 2.5°C / W |
|-----------------------|------------------------------------|----------------|
|-----------------------|------------------------------------|----------------|

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.



Vds = 12.5V

Idq = 1.6A

f =500MHz

10

15

5

14

12

10

8

6

4

2

0

0

Gain dB

20

25

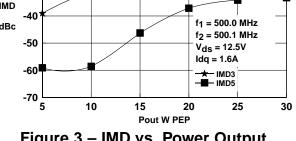
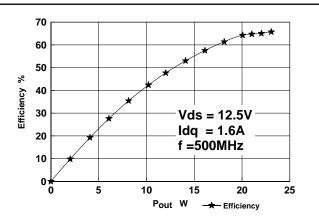



Figure 3 – IMD vs. Power Output.


### **Typical S Parameters**

#### $V_{DS} = 12.5V, I_{DQ} = 0.8A$ ! # MHZ S MA R 50

| !Freq<br>MHz<br>100<br>200 | S11<br>mag<br>0.82<br>0.88 | ang<br>-160<br>-169 | S21<br>mag<br>9.92<br>3.92 | ang<br>72<br>50 | S12<br>mag<br>0.018<br>0.011 | ang<br>-12<br>-16 | S22<br>mag<br>0.7<br>0.81 | ang<br>-155<br>-162 |
|----------------------------|----------------------------|---------------------|----------------------------|-----------------|------------------------------|-------------------|---------------------------|---------------------|
| 300                        | 0.91                       | -175                | 2.29                       | 40              | 0.006                        | 11                | 0.87                      | -169                |
| 400                        | 0.93                       | -179                | 1.43                       | 30              | 0.008                        | 57                | 0.91                      | -175                |
| 500                        | 0.95                       | 178                 | 1.03                       | 23              | 0.013                        | 77                | 0.93                      | -179                |
| 600                        | 0.95                       | 173                 | 0.76                       | 14              | 0.019                        | 78                | 0.95                      | 176                 |
| 700                        | 0.95                       | 170                 | 0.56                       | 7               | 0.023                        | 75                | 0.96                      | 173                 |
| 800                        | 0.96                       | 166                 | 0.39                       | 5               | 0.025                        | 76                | 0.97                      | 169                 |
| 900                        | 0.97                       | 163                 | 0.33                       | 9               | 0.032                        | 84                | 0.97                      | 166                 |
| 1000                       | 0.98                       | 158                 | 0.3                        | 7               | 0.041                        | 78                | 0.97                      | 162                 |

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.







#### D2218UK **OPTIMUM SOURCE AND LOAD IMPEDANCE**

| Frequency | Z <sub>S</sub> | ZL         |  |  |
|-----------|----------------|------------|--|--|
| MHz       | Ω              | Ω          |  |  |
| 500MHz    | 1.4 + j1.1     | 2.4 – j0.4 |  |  |

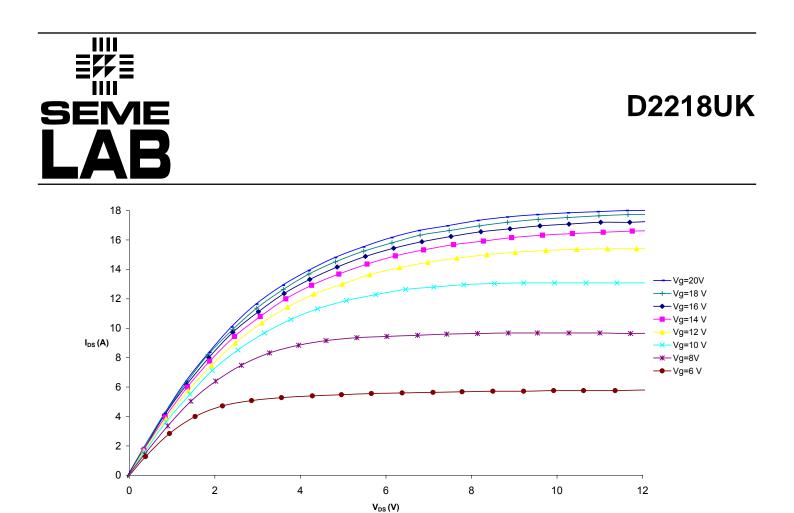
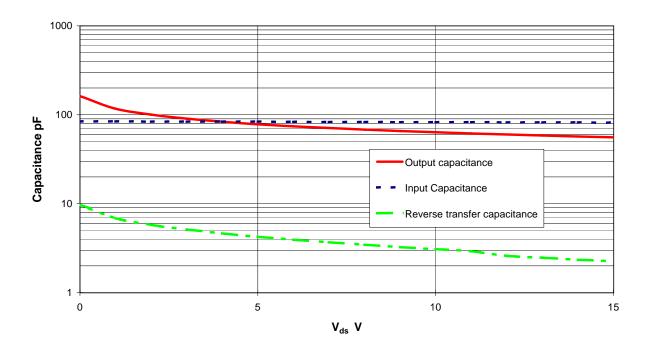
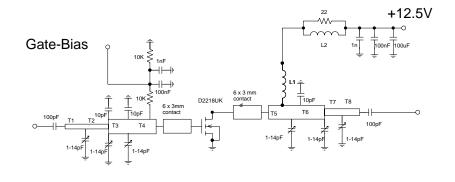




Figure 4 – Typical IV Characteristics.






Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Document Number 7127 Issue 1

### D2218UK





# D2218UK 500MHz TEST FIXTURE

Substrate Taconic RF35 0.8mm, Er=3.5

- T1 1.68mm wide, 21mm long
- T2 1.68mm wide, 104mm long
- T3 8.92mm wide, 17mm long
- T4 8.92mm wide, 13.5mm long
- T5 6.34mm wide, 11.5mm long
- T6 6.34mm wide, 9mm long
- T7 1.68mm wide, 13mm long
- T8 1.68mm wide, 28mm long
- L1 10 turns 0.5mm dia enamelled copper wire, 3mm i.d.
- L2 1.5 turns 0.5mm dia enamelled copper wire on Siemens B62152-A7X ferrite core

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.